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ABSTRACT: Hybrid composites reinforced by short fibers and particles (HCRSFPs) have been widely used in many fields, and more

and more scholars are paying attention to hybrid composites. In this study, the elastic moduli of HCRSFPs in arbitrarily chosen direc-

tions were investigated with respect to their porosities. A material model was built with the assumption of a compound of particles

and polymer matrix containing voids as an effective matrix, and the HCRSFPs were treated as the compound of short fibers and the

effective matrix. With consideration of the three-dimensional spatial orientation distribution and the length distribution of the short

fibers, the laminate analog approach and the Halpin–Tsai model were used to predict the elastic moduli of the HCRSFPs. Numerical

examples and analyses showed that the fiber orientation distribution, reinforcement volume fraction, and porosity had great effects

on the elastic moduli of the HCRSFPs. VC 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43708.
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INTRODUCTION

Hybrid composites reinforced by short fibers and particles

(HCRSFPs), which have low weights and outstanding mechani-

cal properties, have been used extensively in many domains,

including automotive, aircraft, and sports equipment. HCRSFPs

contain pure polymers such as polypropylene, short fibers such

as glass fibers or carbon fibers, and spherical inorganic particles.

Hybrid composites reinforced by multiple reinforcements can

create a synergetic effect; this is usually called a hybrid effect.1

For example, hybrid composites reinforced by multiple rein-

forcements can have better mechanical properties than compo-

sites reinforced by a single reinforcement;2 this is called the

positive hybrid effect. Porosity, which is defined as air-filled cav-

ities inside an otherwise continuous material, is an often

unavoidable part of all composites, and it is essential for reliable

model predictions of mechanical properties.3 Porosity in

HCRSFPs is such a noticeable factor that due attention should

be paid to theoretical and practical research.

A lot of studies have been done on the mechanical properties of

hybrid composites. By studying the flexural behavior through

both experiments and finite element analysis, Dong and Davies4

found out the optimal design for the flexural behavior of glass

and carbon fiber-reinforced polymer hybrid composites. Later,

they5 derived the flexural and tensile moduli of unidirectional

hybrid epoxy composites reinforced by S-2 glass and T700S car-

bon fibers on the basis of classic lamination theory. According

to a two-phase composite material theoretical model, Duc and

Minh6 gave the six elastic constants first and then presented a

method to determine the bending deflection of three-phase

polymer composite plates consisting of reinforced glass fibers

and titanium oxide particles. By conducting experiments, Fu

and Lauke7 found that the replacement of a part of the polymer

matrix by calcite particles for fiber composites to obtain hybrid

composites led to a further increase in the tensile modulus.

Microcomputed tomography was used by Lee et al.8 to observe

the three-dimensional structure of fibers in the composite to

acquire the fiber length distribution and fiber orientation distri-

bution. Then, the effective elastic modulus for a multiphase

hybrid composite was derived. Alamri and Low9 fabricated and

investigated an epoxy system reinforced with either recycled cel-

lulose fibers or nanosiliconcarbide particles and with both

recycled cellulose fibers and nanosiliconcarbide. They found

that the influence of the addition of nanosiliconcarbide to

recycled cellulose fiber/epoxy composites on the mechanical

properties was positive with respect to the toughness properties.

The elastic modulus plays an important role in the mechanical

properties. Therefore, large number of researchers have done

numerous studies on the elastic moduli of composites. Theocaris
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and Sideridis10 made three assumptions: (1) filler particles are

spherical, (2) fillers are completely dispersed, and (3) the volume

fraction of fillers is sufficiently small. These assumptions allowed

them to neglect any interaction among fillers. Then, they derived a

theoretical expression for the elastic modulus of particulate com-

posites. Later, Sideridis11 developed a theoretical expression for the

transverse elastic modulus in fiber-reinforced composites through

the assumption that the composite material consists of three

phases, that is, the fiber, the matrix, and the interphase. On the

basis of a micromechanical model of a short-inorganic-fiber-

reinforced polymer composite, Liang12 presented an expression for

the Young’s modulus of short-inorganic-fiber-reinforced polymer

composites. On the basis of statistics, Meng et al.13 investigated the

effects of unequal compressive and tensile moduli on carbon fiber-

reinforced plastic composites, and they proposed that strain-

dominated failure criteria should be used for composite design,

testing, and certification. By virtue of Maxwell’s concept of equiva-

lent inhomogeneity, Mogilevskaya et al.14 evaluated the effective

elastic modulus of a fiber-reinforced, unidirectional composite

with isotropic phases.

The elastic modulus, especially the longitudinal modulus of the

composite, has been investigated very much at this point. On

the basis of a laminate analogy approach and the shear lag

model, Fu and Lauke15 presented an expression for the longitu-

dinal modulus of misaligned short-fiber-reinforced polymers.

Epaarachchi et al.16 proposed a simplified approach for the

analysis of the longitudinal modulus and other mechanical

properties of randomly distributed short-fiber composites.

Many studies of the anisotropy of the elastic moduli of compo-

sites have been done. By taking their previous work a step fur-

ther, Fu and Lauke17 later presented a method for analyzing the

anisotropy of the elastic moduli of misaligned short-fiber-

reinforced polymers. According to the laminate analogy and

modified Tsai–Hill criteria, Mortazavian and Fatemi18 investi-

gated the effects of the fiber orientation and anisotropy on the

elastic modulus of a short-fiber-reinforced polymer composite.

In terms of the porosity, Madsen et al.19 included the influence

of the porosity on the composite stiffness on the basis of a

modified rule of mixtures, and a maximum obtainable stiffness

of the composites was calculated at a certain transition fiber

weight fractions by their theory.

However, with the consideration of porosity, the elastic modulus

of a hybrid composite simultaneously reinforced by short fibers

and particles in arbitrarily chosen directions has not been stud-

ied up to this point, and this was the main purpose of our

research reported in this article.

DESCRIPTION OF THE PROBLEM

Three-Dimensional Spatial Fiber Distribution

In the process of injection molding and extrusion, short fibers

are often damaged and broken by the actions of shear, extru-

sion, and impact. As a result, the lengths of the fibers will inevi-

tably become unequal, and the orientations of the fibers will be

different. The distribution of short fiber length and short fiber

orientation can be described by certain probability density

functions.

Fiber Length Distribution. The Weibull distribution function

has been widely used by many researchers to describe the fiber

length distribution. However, fiber breakage is severe in multi-

phase hybrid composites, and the use of the Weibull distribu-

tion function to describe short-fiber distribution will cause a

relatively large deviation. The log-normal function matches the

experimental statistics better than the Weibull distribution func-

tion.20 Hence, the log-normal function is supposed to be most

suitable for HCRSFPs. The log-normal distribution function

[f(L)] can be expressed as follows20:

f Lð Þ5 1

n
ffiffiffiffiffiffiffiffi
2pL
p exp 2

ln L2mð Þ2

2n2

" #
(1)

where m and n are the mean and standard deviation, respec-

tively, and L is the fiber length. From eq. (1), the mean fiber

length (Lmean) can be defined as follows:

Lmean5

Z 1
0

Lf Lð ÞdL (2)

Fiber Orientation Distribution. A three-dimensional coordinate

system was adopted to show the orientation of a certain short

fiber. It can be described by only two parameters, u and /,21

where u is the angle that the fiber’s axis makes with the z axis and

/ is the angle that the projection of fiber’s axis to plane xOy

makes with the x axis. Angles H and F, which describe the arbi-

trarily chosen directions, can be defined in the same way (see Fig-

ure 1). The probability density function of u [g1(u)] and the

probability density function of / [g2(/)] are given as follows22:

g1 hð Þ5 sin hð Þ2p21
cos hð Þ2q21R hmax

hmin
sin hð Þ2p21

cos hð Þ2q21
dh

0 � hmin � h � hmax �
p
2

� �
(3)

g2 /ð Þ5 jsin /j2s21jcos /j2t21R hmax

hmin
jsin /j2s21jcos /j2t21

d/
0 � /min � / � /max � 2pð Þ

(4)

where p, q, s, and t are shape parameters that can determine the

shape of the distribution curve. As in different molding

Figure 1. Description of a single short fiber’s orientation (u, /) and an

arbitrarily chosen direction (H, F). O coordinate origin. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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situations, the distributions of the fiber orientation will be dif-

ferent, the distribution of fiber orientation has to be described

by the distribution functions g1(u) and g2(/) with different

parameters.

Material Model

For HCRSFPs, a novel micromechanical model is proposed in

this article. The voids, whose volume fraction (Vv) is the poros-

ity, can be treated as a phase of the HCRSFPs. So, there are

four phases in HCRSFPs, namely, the pure polymer, the voids,

the particles, and the short fibers. The voids distribute uni-

formly in the pure polymer, and their shapes are considered to

be spherical or quasi-spherical, so the mechanical properties of

a compound consisting of voids and pure polymer can be

regarded as isotropic. Such a compound is defined as a polymer

matrix containing voids. Similarly, as the particles distribute

randomly and evenly in the polymer matrix containing voids

and their shapes are roughly considered to be spherical, the

mechanical properties of a particle-filled polymer matrix con-

taining voids are taken to be isotropic, too. This particle-filled

polymer matrix containing voids is defined as an effective

matrix. Finally, HCRSFPs can be treated as short-fiber-filled

effective matrixes. The building process of the material model is

shown in Figure 2.

It is obvious that the summation of each phase’s volume frac-

tion is 1, as follows:

Vpp 1 Vp 1 Vf 1 Vv 5 1

where Vpp is the volume fraction of the pure polymer, Vp is the

particle volume fraction, and Vf is the fiber volume fraction.

Polymer Matrix Containing Voids

There are two phases in the polymer matrix: the pure polymer

and the voids. The relative Vpp and relative voids are
Vpp

Vpp1Vv
and

Vv

Vpp1Vv
, respectively. The volume fraction of the polymer matrix

containing voids (Vm) is calculated as follows:

Vm5Vpp1Vv (6)

The elastic modulus and the Poisson ratio of a polymer matrix

containing voids (Em and lm, respectively) can be obtained by

the law of mixture:

Em5
Vpp

Vm

Epp (7)

lm5
Vpp

Vm

lpp (8)

where Epp and lpp are the elastic modulus and Poisson ratio of

the pure polymer, respectively.

Effective Matrix

There are three phases in the effective matrix, they are the pure

polymer, the voids, and the particles. The volume fraction of

the effective matrix (V0) can be expressed as follows:

V0 5 Vm 1 Vp (9)

The relative volume fractions of the polymer matrix containing

voids and particles are Vm/V0 and Vp/V0, respectively. On the

basis of the theory of the Halpin–Tsai model,23 the elastic mod-

ulus of the effective matrix (E0) can be calculated as follows:

E05
Em 112kpg

Vp

V0

� �
12g Vp

V0

(10)

where

g5

Ep

Em
21

Ep

Em
12kp

(11)

where Ep and kp are the elastic modulus and the aspect ratio of

the particles, respectively. As mentioned previously, the shape of

the particles could be roughly considered to be spherical, so the

aspect ratio was taken as kp � 1.

The Poisson ratio of the effective matrix (l0) can be calculated

by another form of the law of mixture.24 It is shown as follows:

l05
lmlp

lp
Vm

V0
1lm

Vp

V0

(12)

where lp is the Poisson ratio of the particles.

SOLUTION TO THE PROBLEM

Laminate Analog Approach (LAA)

According to the LAA, HCRSFPs can be divided into a large

number of laminas. As the particles are distributed randomly

and uniformly in the hybrid composite, the distributions of the

particles in each laminate are considered to be the same. How-

ever, the distributions of the fibers in each lamina are different.

Each lamina contains short fibers with lengths between l and

l 1 dl, with orientations between u and u 1 du and / and

/ 1 d/.

Figure 2. Process of building the material model. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Take a certain lamina, for example. The certain lamina contains

fibers with lengths between l0 and l0 1 dl and orientations bet-

ween u0 and u0 1 du and /0 and /0 1 d/. In the coordinate

system of this laminate (i.e., the local coordinate system), the

longitudinal elastic modulus (E11), whose direction is parallel to

the fibers’ direction, can be given as follows23

E115
E0 112kf g1Vf

� �
12g1Vf

(13)

where kf is the aspect ratio of the fibers [kf 5 1/df (where df is

the diameter of the fibers)] and h1 is given as follows:

g15

Ef

E0
21

Ef

E0
12kf

(14)

where Ef is Young’s modulus of the fibers. The transverse modu-

lus (E22) and the in-plane shear modulus (G12), which are not

sensitive to the aspect ratio of a fiber, can be denoted as

follows:23

E225
E0 112g2Vf

� �
12g2Vf

(15)

G125
G0 11g3Vf

� �
12g3Vf

(16)

where

g25

Ef

E0
21

Ef

E0
12

and g35

Gf

G0
21

Gf

G0
11

(17)

where Gf is the shear modulus of the fibers and G0 is the shear

modulus of the effective matrix. G0 can be expressed as follows:

G05
E0

2 11l0ð Þ

The longitudinal Poisson ratio (l12) can be obtained by the rule

of mixture:

l12 5 l0V0 1 lf Vf (18)

where lf is the Poisson ratio of the fibers. The transverse Pois-

son ratio (l21) can be given as follows:

l215
l12E22

E11

(19)

Elastic Modulus of the HCRSFPs in an Arbitrarily

Chosen Direction

Now, an arbitrary direction (H, F) is chosen, and the elastic

modulus in this direction [E(H,F)] will be predicted. To obtain

the transformation equation that relates the local coordinate

system of the lamina to the global coordinate system, a is

defined as the angle that the fibers of angle (u, /) make with

the arbitrarily chosen direction (H, F; see Figure 1). The rela-

tionship of a, u, /, H, and F is shown as follows:

cos a 5 cos h cos H 1 sin h sin H cos / 2 Fð Þ (20)

Thus, the transformed stiffness matrix in the global coordinate

system (Qij) can be gained by the following equation:

Q11

Q22

Q12

Q66

Q16

Q26

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

5

a4 b4 2a2b2 4a2b2

b4 a4 2a2b2 4a2b2

a2b2 a2b2 a41b4 24a2b2

a2b2 a2b2 22a2b2 a22b2ð Þ2

a3b 2ab3 ab32a3b 2 ab32a3bð Þ

ab3 2a3b a3b2ab3 2 a3b2ab3ð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

3

Q11

Q22

Q12

Q66

0
BBBBB@

1
CCCCCA

(21)

where a 5 cos a, b 5 sin a, and Qij is the stiffness matrix that

relates the stress to the strain in the local coordinate system of a

lamina. Because there is a continuous fiber length distribution

and a continuous fiber orientation distribution, the overall lam-

inate stiffness matrix (Aij) can be obtained through the integra-

tion of the fiber length and orientation:

Aij5

Z Lmax

Lmin

Z hmax

hmin

Z /max

/min

Qijf Lð Þg1 hð Þg2 /ð ÞdLdhd/ (22)

Finally, E(H, F) can be gained from the Aij components:

EðH;FÞ5
A11A222A12

2

A22

(23)

NUMERICAL EXAMPLES

Example 1

To validate the theory in this article, we made comparison to

the work conducted by Camacho et al.,25 who explored the elas-

tic modulus of composites reinforced by multiple fibers and

microspheres. Camacho et al. provided prediction data and

experimental data of the elastic moduli of composites contain-

ing short quartz fibers and voids. Even though the Vp value of

these composites was equal to zero, they still took the porosity,

which is the main concern of this study, into consideration.

The data from Camacho et al. were as follows: Epp 5 3.3 GPa,

lpp 5 0.29, Ef 5 69 GPa, lf 5 0.17, df 5 9 lm, and

Table I. Comparison of the Elastic Modulus Values Predicted by This Study and Reference 25

E(p/2, 0) (GPa)

No. Vf Vp Vv

Predictions
in this study

Predictions
in ref. 25

Experimental data
in ref. 25a

1 6.0 0 8.2 4.28 4.4 3.8 (60.4)

2 12.6 0 6.7 6.01 6.1 6.1 (60.4)

3 19.8 0 13.7 7.16 7.4 6.8 (61.1)

a The data in parentheses are standard deviations.
“E(p/2,0)” is the value of the elastic modulus in the direction (H, F) 5 (p/2,0).

ARTICLE WILEYONLINELIBRARY.COM/APP

WWW.MATERIALSVIEWS.COM J. APPL. POLYM. SCI. 2016, DOI: 10.1002/APP.4370843708 (4 of 8)

http://onlinelibrary.wiley.com/
http://www.materialsviews.com/


Lmean 5 6.4 mm (m 5 8.65, n 5 0.48). Camacho et al. used an

orientation average (aij) to describe the distribution of short fibers.

They tested three specimens: (1) a33 5 0.006 (corresponding to

umean 5 1.56), (2) a33 5 0.013 (umean 5 1.55), and (3) a33 5 0.027

(umean 5 1.54). These three data indicate that the fiber distributions

of all of these three specimens were slightly nonplanar and uni-

formly distributed in the plane xOy.25 The following parameters

were taken to correspond with the fiber distributions of the three

specimens: s 5 0.5, t 5 0.5, (1) p 5 1000, q 5 0.6, (2) p 5 800,

q 5 0.6, and (3) p 5 500, q 5 0.6. In their experiment, the in-plane

(i.e., plane xOy) elastic modulus was tested, so the value of H in

this study was taken as H 5 p/2, correspondingly. Because the

fibers in the specimens distributed uniformly in the plane, the

value of F could be taken randomly. We took it as F5 0. The pre-

dictions and experimental data from Camacho et al. and the pre-

dictions from this study are shown in Table I. As shown in Table I,

we found that the results were in good agreement, and the correct-

ness of the theory in this study is further explained. The advantage

of the model put forward in this study over the model of Camacho

et al. is that our model can predict the elastic modulus in any direc-

tion of a composite, whereas the model of Camacho et al. can only

predict the elastic modulus in a specified direction of a composite.

Moreover, a different form of law of mixture [see eq. (12)] was

used in this study to calculate l0 because this form of law of mix-

ture has been argued to be more suitable for the prediction of the

Poisson ratio of particle-reinforced composites.24 However, in the

work of Camacho et al., a form similar to eq. (18) was adopted. As

a result, our predictions of the elastic modulus of the composites

in this example were closer to the experimental data than those of

Camacho et al. Our predictions were about 2.4% lower than the

predictions of Camacho et al.

Example 2: The Results of Four Situations

In the example, the parameters of the components in the com-

posite were chosen as follows, Epp 5 2.5 GPa, lpp 5 0.35, Gpp5
Epp

2 11lppð Þ, Vpp 5 0.58, Vv 5 0.02, Ep 5 200 GPa, lp 5 0.25,

Vp 5 0.2, Ef 5 70 GPa, lf 5 0.25, Gf 5
Ef

2 11lfð Þ, Vf 5 0.2, df 5 12

lm, m 5 5, and n 5 0.5.

Figure 3 shows the orientation distribution functions g1(u) and

g2(/) with a range of 0� u� p/2 and 0�/� 2p, respectively. As

shown in Figure 3, different shape parameters resulted in different

shapes of the distribution function curve; this means that different

molding situations of the hybrid composites resulted in different

distributions of short fibers. When g1(u) or g2(/) had a high value

at a certain value of u or /, this indicated that there were lots of

fibers located in this direction. On the contrary, when g1(u) or

g2(/) had a low value at a certain value of u or /, it indicated that

there were not many fibers located in this direction.

Figure 4 displays the elastic modulus distribution of the

HCRSFPs for four situations. The four pictures in Figure 4 are

the corresponding modulus distributions for the four situations

of fiber orientation distribution in Figure 3, where (a) p 5 2,

q 5 1, s 5 1, and t 5 1; (b) p 5 4, q 5 1, s 5 1, and t 5 0.5; (c)

p 5 1, q 5 2, s 5 0.5, and t 5 1; and (d) p 5 2, q 5 2, s 5 2, and

t 5 2. As shown in Figure 4, the elastic moduli were diverse for

different directions. The distributions of the elastic modulus

were diverse for different fiber orientation distributions. The

elastic modulus was symmetric about F5 p for the range

0�F� 2p and symmetric about F5 p/2 for the range

0�F� p. This was because the distribution of / was symmet-

ric about / 5 p for the range 0�/� 2p and symmetric about

/ 5 p/2 for the range 0�/� p. When we compared the four

pictures with each other, this showed that the fiber orientation

distribution not only influenced the distribution of the elastic

modulus but also influenced the maximum value of the elastic

modulus. For example, the maximum in situation c was greater

than the maximum in situation a. Short fibers were inclined to

orient in some directions for each of the four situations; as a

result, the elastic modulus in these directions had the highest

value. For situation a, the maximum of the elastic modulus

appeared to be at about u 5 1 and / 5 p/4, 3p/4, 5p/4, and

7p/4. From all of the four situations, it was revealed that when

H 5 0, the elastic modulus was a constant, regardless of changes

in F. This phenomenon was explained in ref. 15. Figure 4

reveals the significant influence of the fiber orientation distribu-

tion on the elastic modulus in different directions.

Example 3

In this example, the parameters of the fiber orientation distribu-

tion function were taken as p 5 2, q 5 1, s 5 1, and t 5 1.

Because of the symmetry, the elastic modulus had the

Figure 3. Probability density distribution functions of fiber orientation with different parameters: (a) g1(u) (0� u�p/2) and (b) g2(/) (0�/� 2p).

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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maximum value in four directions, regardless of changes in each

component’s volume fraction [see Figure 4(a)]. One of the four

directions was figured out; the direction was (Hmax,

Fmax) 5 (0.9553, 0.7854). Next, the influence of each compo-

nent’s volume fraction on the elastic modulus is discussed. In

example 3, the porosity (Vv) was taken as several constants, Vp

and Vf were variables, and Vpp 5 1 2 Vp 2 Vf 2 Vv. The other

data were the same as those in example 2.

The influence of the porosity (Vv) is demonstrated in Figure 5.

The value of the elastic modulus in the maximum direction

[E Hmax;Fmaxð Þ] was amplified with the enlargement of the rein-

forcement volume fraction (Vf 1 Vp), and it was amplified more

and more rapidly when Vf 1 Vp became large. E Hmax;Fmaxð Þ was

smaller when the HCRSFPs contained a higher porosity (Vv).

As shown in Figure 5, the porosity was an important factor in

the determination of the elastic modulus, and the negative effect

of voids in the HCRSFPs cannot be ignored in the practical

engineering applications.

Figure 6 shows the elastic modulus variation with the fiber vol-

ume fraction (Vf) for diverse Vps in the maximum direction

(H 5 Hmax, F5Fmax). The elastic modulus increased with Vf

for all four situations: Vp 5 0.1, Vp 5 0.2, Vp 5 0.3, and

Vp 5 0.4. The maximum Vf 1 Vp was 0.8 (i.e., Vf 1 Vp� 0.8).

When Vf was the same, the elastic modulus of the composite

with a higher Vp increased more quickly than that with a lower

Vp, for there were more reinforcements (short fibers and par-

ticles) in the composite when Vp was higher. We concluded that

the more reinforcements there were, the more obvious the rein-

forcing effect was. When Vf 1 Vp 5 0.8, the elastic modulus with

Vp 5 0.2 had the highest value among the four situations. This

phenomenon, which is related to the optimal design, is dis-

cussed in the following section.

Figure 7 shows the E Hmax;Fmaxð Þ (H 5 Hmax, F5Fmax) variation

with Vp for diverse Vfs. We found that the elastic modulus

Figure 4. Elastic modulus distribution of HCRSFPs with different parameters. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5. E Hmax ;Fmaxð Þ (H 5 Hmax, F5Fmax) variation with changing

Vp 1 Vf values for diverse values of porosity (Vv). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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increased with increasing Vp for all four situations: Vf 5 0.1,

Vf 5 0.2, Vf 5 0.3, and Vf 5 0.4. Similar to Figure 6, when Vp

was the same, the elastic modulus with a higher Vf augmented

faster than that with a lower Vf. When Vf 1 Vp 5 0.8, the elastic

moduli with Vf 5 0.1 and Vf 5 0.4 were relatively higher.

The elastic modulus in different directions is shown in Figure 8.

In the reinforcements, there were one-half short fibers and

another half particles, that is, Vf 5 Vp. The elastic modulus

increased with increasing Vf 1 Vp. For a relatively low volume

fraction (ca. 0�Vf 1 Vp� 0.2), the modulus increased relatively

slowly, whereas for a relatively high volume fraction (ca.

0.6�Vf 1 Vp� 0.8), the modulus increased relatively quickly.

For an arbitrarily chosen direction, when H was the same

(H 5 p/4), the modulus in the direction F5Fmax was larger

than that in the direction H 5 p/3 and the direction F5 0 at

the same value of Vf 1 Vp; when F was the same (F5Fmax),

the modulus in direction H 5 Hmax was larger than that in the

direction H 5 p/4 at the same value of Vf 1 Vp. Obviously, we

figured out that the maximum elastic modulus appeared in the

direction (Hmax, Fmax).

Figure 9 shows the E Hmax;Fmaxð Þ (H 5 Hmax, F5Fmax) variation

with the changing of Vf 1 Vp in three situations: the changing

of Vf when Vp 5 0, the changing of Vp when Vf 5 0, and the

changing of Vf 1 Vp(Vf 5 Vp). The modulus increased with the

increment of Vf 1 Vp, no matter whether the composite was

reinforced by one reinforcement only or by both reinforcements.

When 0.675�V� 0.870, the composite reinforced by two rein-

forcements had a higher elastic modulus than composite rein-

forced by only one reinforcement; this is the so-called positive

hybrid effect. When V� 0.675, the composite reinforced only by

short fibers possessed the highest elastic modulus. When

V� 0.870, the composite reinforced only by particles possessed

the highest elastic modulus.

As we have discussed which values of Vf 1 Vp generated a posi-

tive hybrid effect, we move a step forward to study the question

of when a positive hybrid effect is generated in two-

reinforcement-reinforced composites, what the percentage of

short fibers to the two reinforcements would possess the maxi-

mal modulus. Figure 10 reveals the E Hmax;Fmaxð Þ (H 5 Hmax,

F5Fmax) variation with changing in
Vf

Vf 1Vp
. It is interesting to

Figure 6. E Hmax ;Fmaxð Þ (H 5 Hmax, F5Fmax) variation with Vf for diverse

Vp values (Vv 5 0.05). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 7. E Hmax ;Fmaxð Þ (H 5 Hmax, F5Fmax) variation with Vp for diverse

Vf values (Vv 5 0.05). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 8. Elastic modulus variation in different directions with the total

Vf 1 Vp (Vf 5 Vp, Vv 5 0.05). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 9. E Hmax ;Fmaxð Þ (H 5 Hmax, F5Fmax) variation with changing val-

ues of Vf 1 Vp for three situations (Vv 5 0.02). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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note that when about
Vf

Vf 1Vp
50:8, the maximums of the elastic

modulus for all the three situations (Vp 1 Vf 5 0.675,

Vp 1 Vf 5 0.8, and Vp 1 Vf 5 0.870) were obtained; this indi-

cated that there was an optimal percentage of short fibers to the

two reinforcements in terms of a positive hybrid effect. Thus,

when the data from the short fibers, particles, and polymer are

known and the direction in which the modulus will be pre-

dicted has been chosen, one can find out the optimal propor-

tion of each component in the composite to obtain the largest

elastic modulus with the theory in this study.

CONCLUSIONS

In this study, the mechanical properties of the polymer matrix

and the matrix effect were derived by the Halpin–Tsai model and

the law of mixture. Classical LAA was used in this study. For a sin-

gle lamina of the HCRSFPs, the Halpin–Tsai model was used to

predict the modulus. Finally, the expression of the elastic modulus

of the HCRSFPs was obtained. The advantage of our developed

model took into consideration the influence of the porosity,

which exists universally in composite materials. The model in our

work provides a microscope of how voids influence the elastic

modulus of composites in the initial step of derivation.

The main results and findings of this study are as follows:

1. The fiber orientation distribution has a significant influence

on the elastic modulus in different orientations of the

HCRSFPs. Different fiber orientation distributions will not

only cause huge differences of the elastic modulus distribution

but will also influence the maximum of the elastic modulus.

2. For all directions, the elastic modulus increases with increas-

ing Vf 1 Vp.

3. In a certain range of Vf 1 Vp, composites reinforced by two

reinforcements have a higher elastic modulus than compo-

sites reinforced by only one reinforcement.

4. Furthermore, a certain proportion of two reinforcements

will generate a maximum elastic modulus; this is helpful for

the design of a composite in practical applications.

5. Voids in the composite can cause a decrease in the elastic

modulus, and the porosity should draw enough attention

during engineering applications.
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